
Taskflow: A General-purpose Task-
parallel Programming System

Dr. Tsung-Wei (TW) Huang, Assistant Professor
Department of Electrical and Computer Engineering

University of Utah, Salt Lake City, UT
https://tsung-wei-huang.github.io/

https://tsung-wei-huang.github.io/

2

Why Parallel Computing?
• Advances performance to a new level previously out of reach

0

100

200

300

400

500

600

1 CPU 8 CPUs 16 CPUs 24 CPUs 32 CPUs 40 CPUs 1 GPU
Time (minutes) to train a deep neural network

10-100x speed-up over manycore CPUs

Parallel Programming is a “Big” Challenge
• You need to deal with A LOT OF parallelization details

• Parallelism abstraction (software + hardware)
• Concurrency control
• Task and data race avoidance
• Dependency constraints
• Scheduling efficiencies (load balancing)
• Performance portability
• …

• And, don’t forget about trade-offs
• Desires vs Performance

Trade-offs Desires

Portable

Extensible

Maintainable

Simple

Performance?

3

Need a New Programming Solution
• Why existing parallel programming systems are not sufficient?

• Good at loop parallelism but weak in large and irregular task parallelism
• Count on directed acyclic graph (DAG) model that cannot handle control flow

• Envisioning from the evolution of parallel programming:
• Task parallelism is the best model for heterogeneous computing

• Plenty of challenges to be solved …
• New applications demand new tasking models

• Cost of control flow becomes more important
• New accelerators demand new schedulers

• Must value performance portability
• Sustainability over hardware generations
• …

4

Task

dependency

#include <taskflow/taskflow.hpp> // Taskflow is header-only, no wrangle with installation
int main(){

tf::Taskflow taskflow;
tf::Executor executor;
auto [A, B, C, D] = taskflow.emplace(

[] () { std::cout << "TaskA\n"; }
[] () { std::cout << "TaskB\n"; },
[] () { std::cout << "TaskC\n"; },
[] () { std::cout << "TaskD\n"; }

);
A.precede(B, C); // A runs before B and C
D.succeed(B, C); // D runs after B and C
executor.run(taskflow).wait();
return 0;

}

Our Solution: Taskflow

Control Taskflow Graph Programming (CTFG)

6

// CTFG goes beyond the limitation of traditional DAG
auto cond_1 = taskflow.emplace([](){ return decision1(); });
auto cond_2 = taskflow.emplace([](){ return decision2(); });
auto cond_3 = taskflow.emplace([](){ return decision3(); });
cond_1.precede(B, E); // cycle
cond_2.precede(G, H); // if-else
cond_3.precede(cond_3, L); // loop

Very difficult for existing DAG-based
systems to express an efficient overlap

between tasks and control flow …

7

Heterogeneous Tasking
const unsigned N = 1<<20;
std::vector<float> hx(N, 1.0f), hy(N, 2.0f);
float *dx{nullptr}, *dy{nullptr};
auto allocate_x = taskflow.emplace([&](){ cudaMalloc(&dx, 4*N);});
auto allocate_y = taskflow.emplace([&](){ cudaMalloc(&dy, 4*N);});

auto cudaflow = taskflow.emplace([&](tf::cudaFlow& cf) {
auto h2d_x = cf.copy(dx, hx.data(), N); // CPU-GPU data transfer
auto h2d_y = cf.copy(dy, hy.data(), N);
auto d2h_x = cf.copy(hx.data(), dx, N); // GPU-CPU data transfer
auto d2h_y = cf.copy(hy.data(), dy, N);
auto kernel = cf.kernel((N+255)/256, 256, 0, saxpy, N, 2.0f, dx, dy);
kernel.succeed(h2d_x, h2d_y).precede(d2h_x, d2h_y);

});

cudaflow.succeed(allocate_x, allocate_y);
executor.run(taskflow).wait();

cudaFlow automatically
transforms an application GPU

task graph to an optimized
“CUDA graph”

8

Drop-in Integration
• Taskflow is header-only – no wrangle with installation

• Include Taskflow to your project and tell your compiler where to find it

Compile your program with Taskflow
~$ git clone https://github.com/taskflow/taskflow.git
~$ g++ -std=c++17 simple.cpp –I taskflow/ –O2 –pthread –o simple
~$./simple
TaskA
TaskC
TaskB
TaskD

https://github.com/taskflow/taskflow.git

9

Built-in Visualizer using a Browser
Enable the environment variable TF_ENABLE_PROFILER for visualizer
~$ TF_ENABLE_PROFILER=simple.json ./simple
~$ cat simple.json
[
{“executor”:”0”, “data”:[{“worker”:0, “level”:0, “data”: …}]}
]
Paste the JSON to https://taskflow.github.io/tfprof/

https://taskflow.github.io/tfprof/

10

Application: Timing Analysis (TCAD’21)
• Taskflow largely improves task asynchrony net_delay

init

inc_loop

get_cands

rc1 rc2rc3 rc4

cpu_gpu

cpu_run

0

rc_update

1

merge

0 gpu_run

1

0

stop

1

h2d_slew

elmore_slew

d2h_slew

d2h_at

elmore_delay_0 elmore_delay_1 elmore_delay_2 elmore_delay_3

h2d_atflattern_net_1flattern_net_2

RCP1Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

RCP1+4

SLP1+3

DLP1+3

ATP1+2

JMP1+1

CRP1

RCP1+1

SLP1

DLP1

RCP1+2

SLP1+1

DLP1+1

ATP1

RCP1+3

SLP1+2

DLP1+2

ATP1+1

JMP1

RCP1+5

SLP1+4

DLP1+4

ATP1+3

JMP1+2

CRP1+1

Parallel Parallel Parallel Parallel Parallel Parallel

Level

…

AND

AND
AND …

Pipeline scheduling

Levelize

Tsung-Wei Huang, et al, "OpenTimer v2: A New Parallel
Incremental Timing Analysis Engine," IEEE TCAD, 2021

c1

c2

c3

c4

chk

0
This type of task
parallelism is almost
impossible without
Taskflow …

Application: Timing Analysis (DAC’21)
• Applied Taskflow to accelerate path-based analysis on GPU

• Ex: leon3mp (1.6M gates): 611x speed-up over 1 CPU (44x over 40 CPUs)
• Best paper award in TAU 2021

11

Guannan Guo, Tsung-Wei Huang, Yibo Lin, and Martin Wong, "GPU-accelerated Path-based Timing Analysis,"
IEEE/ACM Design Automation Conference (DAC), CA, 2021

Everything is Composable in Taskflow

12

• End-to-end parallelism in one graph
• Task, dependency, control flow all together
• Scheduling with whole-graph optimization
• Efficient overlap among heterogeneous tasks

• Largely improved productivity!
SYCL/CUDA task

(Euro-Par’21, HPEC’20)

Composition
(HPDC’22, ICPP’22, HPEC’19)

Dynamic task
(IPDPS’19, MM’19)

Control flow
(TPDS’22)

Reddit: https://www.reddit.com/r/cpp/ [under taskflow]

Industrial use-case of productivity improvement using Taskflow

https://www.reddit.com/r/cpp/

We Value Research Impacts for Sustainability

13

• Taskflow1 has been downloaded thousands of times

1: Tsung-Wei Huang, et al., "Taskflow: A Lightweight Parallel and Heterogeneous Task Graph Computing
System," IEEE TPDS, vol. 33, no. 6, pp. 1303-1320, June 2022

Use the right tool for the right job
Taskflow: https://taskflow.github.io

Dr. Tsung-Wei Huang
tsung-wei.huang@utah.edu

https://taskflow.github.io/
mailto:tsung-wei.huang@utah.edu

