
RUST AS A HARDWARE 
DESCRIPTION LANGUAGE

SAMIT BASU 
OSDA 24 
VIRTUAL



MAKING THE CASE FOR RUST

WHY RUST?
▸ Safety - stop errors at 

compile at edit time! 

▸ Reuse & Sharing - package 
manager, generics, and 
crates 

▸ Testing - built-in, batteries 
included 

▸ Tooling - IDE support



A FIRST ATTEMPT

RUSTHDL

▸ Open Source 

▸ Transpile AST 

▸ Event-based simulator 

▸ Medium scale designs 

▸ developed 

▸ tested 

▸ commercially deployed

https://rust-hdl.org/ 

(Source, Docs, Discord)

https://rust-hdl.org/




CLOSEST COUSINS

COMPARISON TO OTHER HDLS

RustHDL CHISEL MyHDL

Embedding Language Rust SCALA Python

Types Strong and static Strong and static Loose and dynamic

Coding style Behavioral imperative Structural 
Generators Generators

Ecosystem crates.io MavenCentral pypi

Metaprogramming Generics and Macros Generics Yes

http://crates.io


HARDWARE COMPOSITION

STRUCTURE

▸ Circuits are composed into structs 

▸ Input/output signals (ports) also composed 

▸ pub controls visibility 

▸ Encapsulation and reuse 

▸ Designs are hierarchical



BEHAVIORAL INTERCONNECT

CONNECT

▸ State encapsulated in D Flip Flops, BRAMs, 
etc. 

▸ Code is valid Rust  

▸ Latch prevention via yosys 

▸ Rust-like (sane) scoping



MENTAL MODEL

TOWARDS PURE FUNCTIONS
▸ Idea taken from Lucid HDL 

▸ Connect function maps current values to 
“next ones” 

▸ Last update wins 

▸ No surprises from blocking vs 
unblocking assignments…

CURRENT 
SIGNAL 
VALUES

NEXT 
SIGNAL 
VALUES

UPDATE 



MATCH STATEMENTS + ENUMS

FINITE STATE MACHINES

▸ Match on current state 

▸ Rust match is exhaustive 

▸ Next state is assigned here 

▸ Improves readability 

▸ Enums are simple and typed 

▸ Note type hints from RA



USE YOUR WORDS

SIMPLE ENUMS

▸ Unlike C enums, these are strongly 
typed 

▸ Rust guarantees that enum values are 
always valid 

▸ Cannot carry data, just aliases for 
values 

▸ Values are unspecified to allow for 
encoding optimization



SKIP THE C/C++

CONFIGURATION

▸ Circuits are configured at RustHDL 
run time 

▸ Allows for arbitrary complexity in 
configuration 

▸ Avoids need for external programs 
to compute tables/functions/etc. 

▸ Add unit tests and functional tests 
to the configuration



DIGITAL WIRE HARNESSES

INTERFACES

▸ Logical grouping of signals 

▸ Can be nested 

▸ Allow signals in both directions 

▸ Can join interfaces with a single line of code



EVEN FROM VIM!

SIMULATE FROM YOUR IDE

▸ No special configuration or 
tooling 

▸ Batteries included 

▸ Full debugging available 

▸ Set breakpoints based on state/
etc.



BATTERIES INCLUDED

SIMULATION

‣ Multiple clock domains 

‣ Supports combinatorial inter-module logic and non-synchronous designs 

‣ Example of SDRAM chip, controller, and a FIFO



MOTIVATION

DEEPENING THE TESTING STACK

Test Type Example

Bench Hardware

HW Integration Hardware in the loop

Timing Verification Timing Analysis

Simulation Test bench

Unit Test Functional

HDL Compilation Latch detection

HDL Generation Write-before read, etc

Rust Compilation Type correctness

Rust Linting Unused expressions

Language Server Editor squiggles



SHARE AND ENJOY

CRATES.IO AND THE SHARE ECOSYSTEM
▸ Board support packages (BSPs) provide hardware and 

FPGA specific support 

▸ Easily shared on crates.io. 

▸ Anyone can package up and contribute  

▸ Meta-programming features 

▸ BSPs 

▸ Reusable circuit components 

▸ Rust & cargo provide excellent version management 

▸ Semantic versioning for hardware

http://crates.io


NOT “RUSTY” ENOUGH…

EARLY USER FEEDBACK

▸ Need more language features to make it feel more 
“Rusty”: 

▸ Local variables 

▸ Type inference 

▸ Match/if expressions 

▸ Early returns 

▸ Want rich enums, structs, arrays, etc 

▸ Fewer foot guns, more backends, etc.



HELP WITH THE CLOCK-EN-SPIEL!

CLOCKING FOOT GUN
▸ With multiple clock domains, Clock type is not 

enough 

▸ Which clock? 

▸ Which signals go with what clock? 

▸ RustHDL is no help here… 

▸ Ideally, the type system should constrain: 

▸ Signal type 

▸ Signal direction 

▸ Signal time domain



RUST HARDWARE DESCRIPTION LANGUAGE

RHDL

▸ Build a complete co-compiler 

▸ Provide type inference, etc. 

▸ Far more Rust-like 

▸ Fewer surprises and limitations 

▸ Easier to use, harder to build 

▸ Stay tuned…



THANK YOU

Special thanks to the folks that have supported RustHDL and 
RHDL throughout the years. 

Especially J. Vernet, T. Witzel, and the Digital Forge team. 

Also special thanks to TheZoq2 for encouraging me to talk about it! 

Samit Basu 

basu.samit@gmail.com

RustHDL.org


