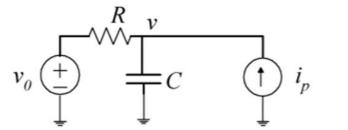


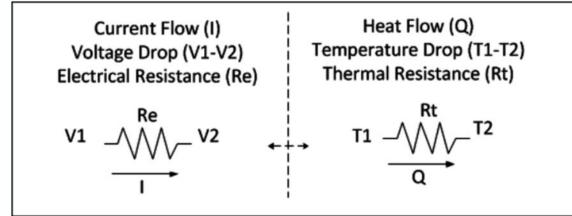
PACT: A SPICE-Based Parallel Compact Thermal Simulator for Fast Analysis

By Mohammadamin Hajikhodaverdian¹, Zihao Yuan¹, Sherief Reda² and Ayse K. Coskun¹

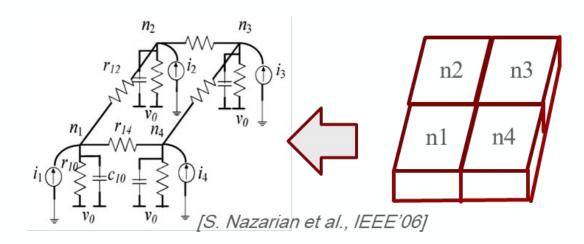
¹Boston University; ²Brown University

Workshop on Open-Source Design Automation (OSDA) May 15, 2024

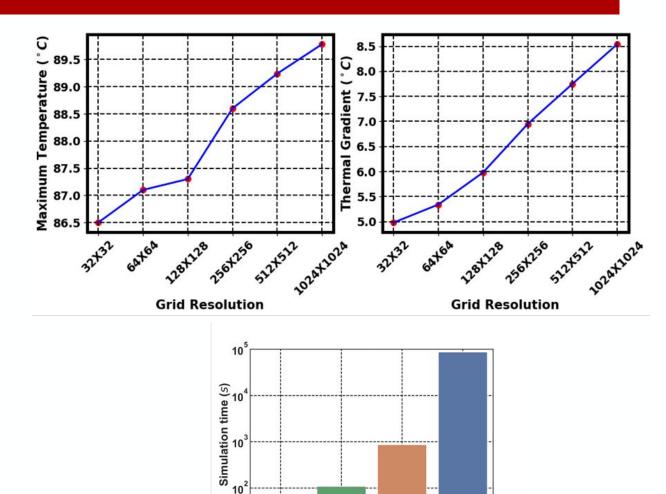



Compact Thermal Modeling (CTM)

- Traditional thermal models
 - Finite element method (FEM)
 - Accurate but slow


• CTM

- Fast and accurate modeling methodology
- Duality between electric and thermal properties
- Lump resistor-capacitor (RC) circuit
- Chip can be modeled as a lump RC network



 $C\frac{dv}{dt} = \frac{v_0 - v}{R_E} + i_p$

Related Work

- Challenges in existing compact thermal simulators
 - Target architecture-level thermal simulations
 - HotSpot [K. Skadron et al., ISCA'10]
 - 3D-ICE [A. Sridhar et al., ICCAD'10]
 - Cannot tackle large and complex problems
 - Standard-cell designs
 - Monolithic 3D simulations
 - Hard to extend emerging integration and cooling technologies
 - New models for cooling methods frequently roll out customized software package

[Z. Yuan et al., TCAD'21]

Chip thickness (µm)

1.0

0.1

10.0

100.0

Contributions of PACT

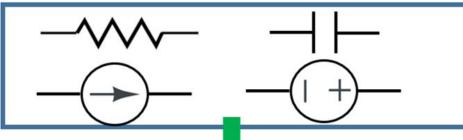
PACT: Parallel Compact Thermal Simulator

- Fast and accurate
- Standard-cell level to architecture-level
- High extensibility
- Interface to OpenROAD [T.Ajayi et al., DAC'19]
- Open-sourced simulator: <u>https://github.com/peaclab</u>
- VisualPACT

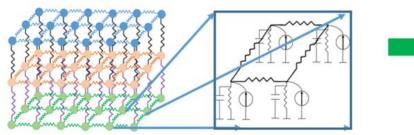
Accuracy vs. other thermal simulators:

- 3.28% vs. COMSOL
- < 0.5% vs. HotSpot
- 1.12^{°C} vs. 3D-ICE

Speed vs. HotSpot:


- Steady-state: I.8X
- Transient: 186X

PACT Simulation Flow


User inputs

- Chip stack descriptions
- # of grids and heat sink type
- Material properties and cooling method

Calculate netlist components

Thermal netlist generator

SPICE Engine Outputs CSV Parallel configuration (OpenMPI) # of Node, # of Cores ٠ Parallel option (e.g., -bind-to none) ٠ Job mapping option (e.g., -cpu-set) Simulation type and solver selection Steady-state (e.g., KLU, KSparse) Transient (e.g., Backward Euler, Trapezoidal) ٠ Options (e.g., time period, step size) ٠

PACT Simulation Flow

User inputs

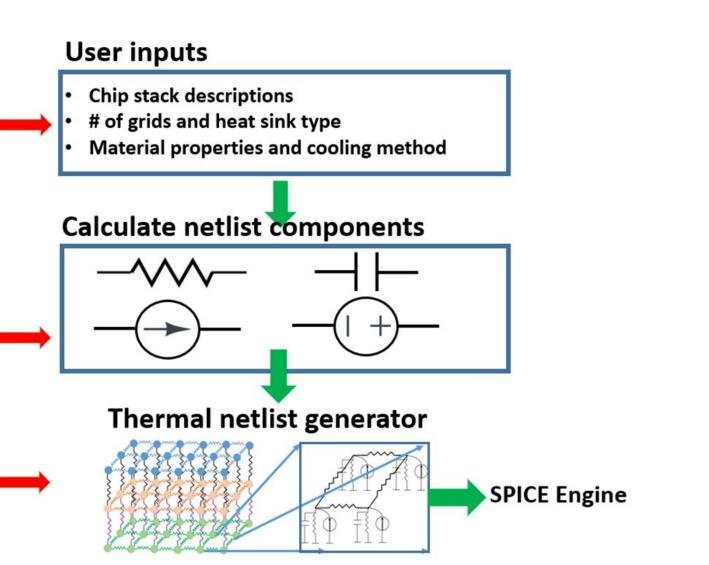
- Chip stack descriptions
- # of grids and heat sink type
- Material properties and cooling method

Symbol	Component name	Equivalent terminology in PACT							
	Resistor	Thermal Resistor							
	Capacitor	Thermal Capacitor							
	Current source	Heat flow (power) Liquid convection in microchannel grid							
\rightarrow	Voltage-controlled current source								
+	Voltage source	Assign initial temperature and ambient temperature							
	PWL current source	Enable transient thermal simulation with step response or real power traces							

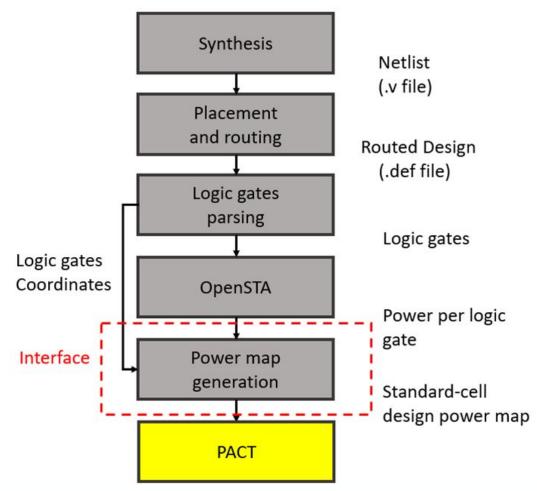
SPICE Engine

Extensibility of PACT

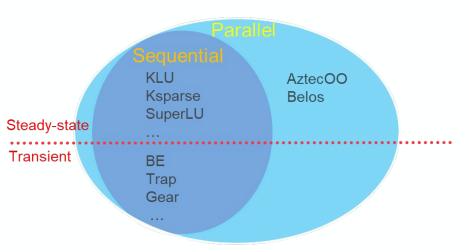
Liquid cooling input parameters


[Liq] Thermal resistivity ((m-k)/w) = 1.647 Specific heat capacity (j/m^3k) = 4.181e6 inlet_temperature (Celsius) = 27 fluid_density (kg/m3) = 998 dynamic_viscosity (pa.s) = 8.89e-4 coolant_velocity (m/s) = 0.5 num_of_channels = 2

Liquid.py


Liquid grid cell information

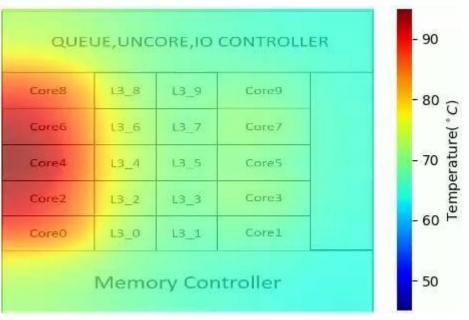
[Liq] library_name = Liquid library = Liquid.py virtual_node = center_center


OpenROAD Interface and PACT Solvers

OpenROAD Interface

PACT Solvers

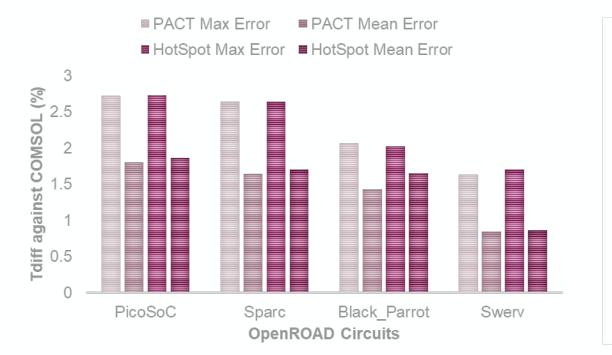
- Direct solver vs. Iterative solver
- Numerical instability issue with Forward Euler method (Monolithic 3D transient simulation)
- Simulation speed and accuracy tradeoff

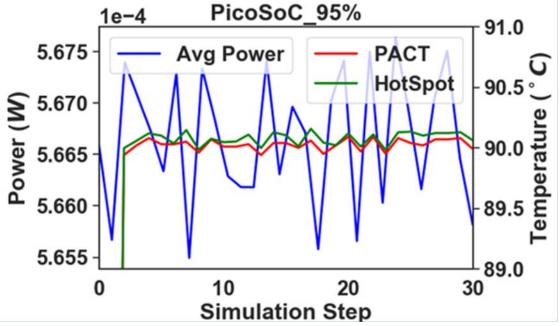


VisualPACT

• VisualPACT

- Generating thermal videos for transient thermal simulations
- Visualizing transient thermal behaviors of architectural simulations

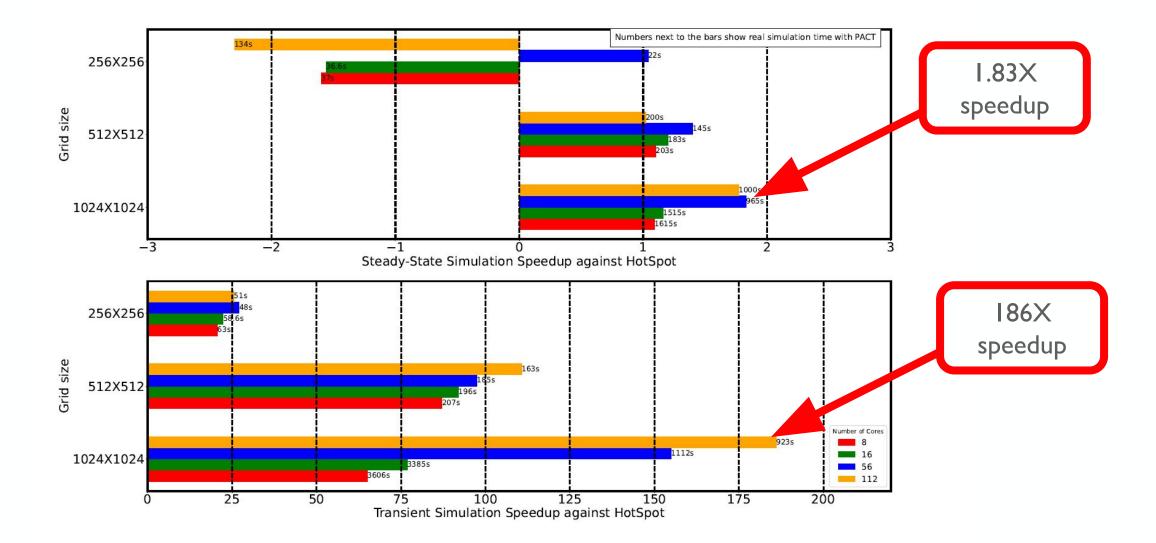

VisualPACT (Intel i7 6950X)



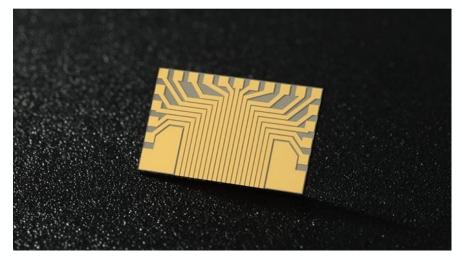
Validation with OpenROAD Benchmarks

Steady-State vs. HotSpot

Transient vs. HotSpot



PACT vs. COMSOL (Max Steady-State Diff: 2.77%)


PACT vs. COMSOL (Max Transient Diff: 3.28%)

PACT Speed Analysis against HotSpot

PACT Case Study: Lab-Grown Diamond Heat Spreaders

- High thermal conductance compared to the copper heat spreaders
- Can be bonded directly to the processor's layer w/o thermal interface
- Diamond heat spreaders vs. copper heat spreaders

PACT Case Study: Lab-Grown Diamond Heat Spreaders

Chip stack #1 (Copper)

Chip stack #3 (Diamond)

QUEUE, UNCORE, IO CONTROLLER			QUEUE, UNCORE, ID CONTROLLER				ER	- 90		
Core8	L3_8	L3_9	Core9		Core8	L3_8	L3_9	Core9		- 80 _C
Core6	L3_6	L3_7	Core7		Coreő	L3_6	L3_7	Core7		
Core4	L3_4	13_5	Core5		Core4	L3_4	13_5	Core5		• Temperature - 00 -
Core2	L3_2	L3_3	Core3		Core2	L3_2	L3_3	Core3		empe
Core0	L3_0	L3_1	Corel		Core0	L3_0	L3_1	Core1		- 60 🖵
Memory Controller			Memory Controller					- 50		

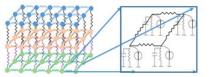
Hot Spot temperature reduction>20°C

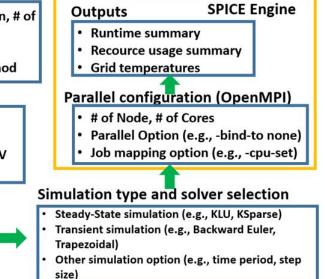
- Enable easy adoption without having to install dependencies (i.e., Xyce SPICE simulator)
- Use Docker to build a new image

BOSTON UNIVERSITY

• PACT

- Fast and accurate parallel thermal simulator
- Architecture level & standard-cell level
- High extensibility for emerging cooling methods
- Various numerical solvers
- OpenROAD interface
- VisualPACT


User inputs


- Chip stack descriptions (e.g., floorplan, # of layers, power traces)
- # of grids and heat sink type
- Material properties and cooling method

Calculate netlist components

- Calculate thermal R, C, and I
- Calculate package thermal R and C
- Calculate thermal R, C, and I for TSV and cooling methods

Thermal netlist generator

CONCLUDING REMARKS

More info at https://github.com/peaclab/PACT Please send feedback to aminhaji@bu.edu