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« Data science algorithms, approaches, and frameworks are LeNet architecture from the original paper
qL”Ckly eVOIVlng INPUT C1: teature maps ot mapS16@10)(1304: f. maps 16@5x5

6@28x28
32x32 X S2: f. maps
6@14x14

« Domain-specific accelerators are the only possible
approach to keep increasing performance in tight
constraints

‘ Full connection Gaussian connections

« Existing accelerators start from specific models (i.e., mostly Convolutions Subsampling  Convolutions  Subsamping  Full connection
deep neural networks) or only try to accelerate specific
computational patterns coming from high-level frameworks

« Designing hardware by hand is complex and time-
consuming

« Depending on the application, a designer may want to
explore performance, area, energy, accuracy, and more...

* Need tools to quickly transition from formulation of an
algorithm to the accelerator implementation and
explore the accelerator design along different
dimensions
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B e Tavyvey o S . » A modular, multi-level, interoperable, extensible,
| —— . open-source hardware compiler from high-level
| _meewr @] | programming frameworks to silicon
lr;;n;;;;‘"’::::_i:::: ““““““ . Compiler-based frontend, leveraging the MultiLevel
i > oo —— | Intermediate Representation (MLIR)
e r-__l____, S - ~ + Compiler-based backend, leveraging state-of-the-
e e T A . art High-Level Synthesis (HLS) techniques, as well
[omvams 1 | | [==]i ——;  as a Coarse-Grained Reconfigurable Array (CGRA)
e | E | e generator

—— « Generates synthesizable Verilog for a variety of

e .
: targets, from Field Programmable Gate Arrays

(FPGASs) to Application Specific Integrated Circuits

[M. Minutoli, V. G. Castellana, C. Tan, J. Manzano, V. Amatya, A. (AS I CS)

Tumeo, D. Brooks, G-Y. Wei: SODA: a New Synthesis Infrastructure

o ey o e esmnoaecsermars e e OQptimizations at all levels are performed as compiler
[J. Zhang, N. Bohm Agostini, S. Song, C. Tan, A. Limaye, V. Amatya, O ptl m Izatl o n passes

J. Manzano, M. Minutoli, V. G. Castellana, A. Tumeo, G-Y. Wei, D. - _ _ . o
Brooks: Towards Automatic and Agile AI/ML Accelerator Design with [N. Bohm Agostini, S. Curzel, J. Zhang, A. Limaye, C. Tan, V. Amatya, M. Minutoli, V.G. Castellana, J. Manzano, A. Tumeo: Bridging

End-to-End Synthesis. ASAP 2021: 218-225] Python to Silicon: The SODA Toolchain. IEEE Micro Magazine, to appear.]
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SODA-OPT: Search, Outline, Dispatch, Accelerate frontend

Optimizer “generates” the SODA High-Level IR

Employs and embraces the MLIR framework

MLIR: Multi-Level Intermediate Representation
Used in TensorFlow, TFRT, ONNX-MLIR, NPComp, others

Several architecture independent dialects (Linalg, Affine,
SCF) and optimizations

Interfaces with high-level ML frameworks through MLIR

“bridges” (e.qg., libraries, rewriters)

Defines the SODA MLIR dialect and related compiler passes to:

|dentify dataflow segments for hardware generation

Perform high-level optimizations (dataflow transformations,
data-level and instruction-level parallelism extraction)

Generate interfacing code and runtime calls for
microcontroller

[N. Bohm Agostini, D. Kaeli, A. Tumeo: SODA-OPT: System-Level Design in MLIR for HLS. SC 21 Poster]

[N. Bohm Agostini, S. Curzel, V.C. Amatya, C. Tan, M. Minutoli, V. G. Castellana, J. Manzano, D. Kaeli, A. Tumeo, An MLIR-

based Compiler Flow for System-Level Design and Hardware Acceleration. ICCAD 2022]

SODA-OPT: Frontend and High-Level IR

MLIR: Linalg and Affine Dialects

v

Search & Outline kernel functions

v

MLIR and SODA Dialects
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Runtime
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Translate to LLVM IR

SODA-OPT: System Overview

https://qgitlab.pnnl.gov/sodalite/soda-opt
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- The synthesizer backend take as input the properly [
optimized low-level IR and generate the hardware

descriptions of the accelerators e ——

 The HLS backend is PandA-Bambu, an open- | - |

source state-state-of-the-art high-level synthesis ; —

( H L S ) i Modulej(RTL IR) i

» Key features: parallel accelerator designs, modular i *() i

HLS, and ASIC support | — |

] ] : Verilog and Testbench {I‘:':I} :

* The HLS backend provides automated testing and S f ———————— |

verification of the generated designs [T Tecmeeen ]

* Note: SODA-OPT now also supports output to G

commercial HLS tools (Vits-HLS) L
https://[panda.dei.polimi.it

[Fabrizio Ferrandi, Vito Giovanni Castellana, Serena Curzel, Pietro Fezzardi, Michele Fiorito, Marco Lattuada, Marco Minutoli,
Christian Pilato, Antonino Tumeo: Invited: Bambu: an Open-Source Research Framework for the High-Level Synthesis of
Complex Applications. DAC 2021: 1327-1330]
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* Provides the necessary generality to deal with novel algorithms

* Provides opportunities for specialized and optimized templates by
recognizing specific computational patterns

The SODA Approach relies on progressive lowerings of compiler
intermediate representations (IRs), rather than rewriting annotated C/C++

» Reduces semantic mismatches between high-level and low-level descriptions
» Provides further opportunities to apply optimizations at the right level of abstraction

New optimizations as additional compiler passes

Design space exploration formulated as a compiler optimization problem
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* The multi-level approach of the SODA HODALD

generation of the designs

toolchain allows supporting different target - S—
technologies (FPGA, ASIC) for actual _’[ o }‘_
A

« ASIC targets:

« Commercial Tools (Synopsys Design orentons
Compiler with Global Foundries 12/14 nm 4£ SR J
cells) recemen
* OpenROAD suite (OpenPDK 45nm and Area and Latency
ASAP 7nm cell libraries)
SODA characterization flow. The characterization flow can be
* BaCkend, resources CharaCterized fOr the extended to synthesize HLS generated designs, or used to estimate
target teChnology: ’g]f;:oar;ig:]ateer]r;?z-epower profiles to drive the Design Space

* Eucalyptus tool in Bambu, allows driving
hardware synthesis algorithms to 0 EIIRUAD

optimize for area, latency, etc https://theopenroadproject.org



https://theopenroadproject.org/

Pacific

Northwest  SODA-OPT Optimization Passes

NATIONAL LABORATORY

« SODA-OPT implements optimizations as compiler passes

Avoid Redundancy

Single basic block containing the compute and Promote Reuse

intensive part of the kernel L Structural

More freedom to schedule operations

Tili Scalar Replacement Reuse read results, aggregate on scalars
iling A t N
: : : oT Aggregates Save scalar values loaded from memory and
Increased instruction-level parallelism Unrolling : _ intermediate results in registers rather than
Schedule independent arithmetic operations on the Early Alias Analysis \ performing repeated memory accesses
same cycle when their inputs are available
Outlining N : :
I J datalovel el Memory Early alias :.;\naIYS|s
ncreased data-level parallelism ./ %  Schedule memory operations independently on
Schedule operations into different memory units on regions that don’t alias

7 Temporary Buffer

the same cycle Avoid Unnecessary

Allocation .
Operations
. Alloca Buffer ¢ Remove redundant or unnecessary operations
Avoid unnecessary reads from kernel arguments 4 Promotion Dgac_j que 2 Avoid wasting resources
Reduce expensive accesses to external memory Elimination
Common /
Sub-expression

Elimination
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« Representative of algorithmic

No optimizations With optimizations Trade-offs ] . o .
Kemmel S axeq, Avea Emey (| Mixfeq Awa Eney A patterns in scientific computing or
2 2 H H
(MHz)  (pm?) () (MHz)  (um?) (o) Overhead high-level data science frameworks
2 118 116428 1,658 1.63 38 986.65 2,539 113 3.11 1.53 . . .
[ ]
atax 4 463 138420 1,970 8.20 63 118230 8,211 5.20 7.35 417 Tensors of different dimensions
8 1,819 137131 3,056 33.03 113 634.15 22,677 34.21 16.10 7.42 ° Ta rg et freq uenCy: 1 G HZ
2 113 177891 1,605 1.26 24 1206.61 4,425 0.72 471 2.76 i L )
bicg 4 458 153242 1,881 4.00 39 1098.86 12,015 3.87 11.74 6.39 ° Slg nificant Speed Uups, increased
8 1,810 131411 2974  34.98 78 40086 30,744  21.01 23.21 10.34 o .
2 161 140178 3,100 4.66 27 141124 5067 1.09 5.96 1.63 energy effICIency and Comparatlvely
gemm 4 1,258 1286.68 4,597  37.74 51 78238 21,089  16.36 24.67 459 small area overheads
8 10450 145115 2,590  143.30 139 - - - 75.18 - i
2 246 1250.11 3,778 9.01 66 137454 5832 2.78 3.73 1.54 o 1 GHz constraint met by all the non-
gemver 4 974 103152 7,835  68.27 91 652.62 18595 4350 10.70 2.37 . .
8 3,833 112175 7,547  292.83 141 - - - 27.18 - op timized cases
2 142 1554.66 2,336 2.25 35 123527 4,866 1.12 4.06 2.08 o Maximum freq uency for the o pt| mized
gesummv 4 514 103278 2,468  12.09 50 112852 10,431 5.10 10.28 423
8 1,922 127950 3,614  44.16 101 638.13 25487  52.07 19.03 7.05 cases reduced for Iarger tensor
2 114 158337 1,737 1.09 24 89239 4408 1.07 475 2.54 .
mvt 4 450 135568 4,760  20.15 41 112535 13,366 3.59 10.98 2.81 sSiZzes
8 1,819 121638 3,544 60.56 81 559.19 32,757 16.08 22.46 9.24 ° AS | C designs not generated for a feW
2 340 115526 3,577 9.42 42 117622 9,424 3.50 8.10 2.63 o ;
three mm 4 2719 110628 7,994  163.69 75 305.15 40,428  90.69 36.25 5.06 Optl mized cases with Iarger tensor
8 22130 124323 5614  656.84 231 - - - 95.80 - . . .
2 274 123498 4,082  11.51 45 133767 6,915 0.78 6.09 1.69 sizes because of routin g cong estion
two_mm 4 2,163 101949 7,063  128.57 75 42271 34326 2094 28.84 4.86
8 17,762 1281.06 4,251  508.85 - - - - - -

Table 1: PolyBench results with OpenROAD and the ASAP 7nm technology library
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LeNet architecture from the original paper

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
6@28x28
32x32 X S2: f. maps
6@14x14

G5: layer Fg:jayer OUTPUT
120 84 Y 10

\
\ Full conrllection ‘ Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

 LeNet example

« Each of the operator is
synthesized to an ASIC
accelerator using OpenROAD
and FreePDK 45 nm

« SODA-Opt optimized
accelerators are bigger, but also
much faster

From Python to optimized ASIC
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No Optimizations With optimizations Trade-offs
Kernel
Area Power eff. Area Power eff. Area
Cycles 5 Cycles 5 Speedup
(um~) (GFLOPS/W) (um*) (GFLOPS/W) Overhead
CONV_01 10,262,618 29,073 4.43 4,627,982 124,255 2.68 2.22 4.27
BIAS 02 251,694 10,395 11.48 40,826 60,048 9.01 6.17 5.78
RELU_03 151,342 7,385 41.55 38,446 35,695 38.39 3.94 4.38
CONV_04 85,380,948 36,814 3.32 83,380,180 37,556 3.34 1.02 1.02
BIAS 05 62,932 10,409 11.00 10,222 60,007 8.41 6.16 5.76
RELU_06 37,844 7,464 41.75 9,620 35,950 37.04 3.93 4.82

Table 2: Evaluation of non optimized and optimized LeNet operators in ASIC technology (FreePDK 45 nm at 500 MHz)

« SODA-OPT’s optimizations provide a speedup proportional to the increase
In the area

« Power efficiency may be slightly reduced due to an increase in power
consumption of the faster solutions
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« SODA demonstrates how several Open-Source tools can seamlessly integrate

 SODA also provides initial support to commercial backends:

= SODA-OPT generated LLVM IR can already be fed to Xilinx Vitis HLS
» SODA also targets commercial ASIC logic synthesis tools

* Integration of proprietary tools, however, still is a significant challenges

 Significant opportunities in supporting:
= Open-source intellectual property (IP) blocks as components in the resource libraries
= Open-source system prototyping platforms

= Open-source domain-specific FPGA generators to enable specialization starting from
the high-level specifications
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* Integrating with open-source fast
prototyping platforms: Columbia University
Embedded Scalable Platforms (ESP) T < SR
- SODA-OPT TRk N ¢

s
e ol  SoC

« MLIR is naturally modular and Desigh e integration’

hierarchical 681) "™ )
« Can lower to multiple targets, including ==

Stratus HLS |:|‘:’|:| I5]P] ~~Processor cores -
Catapult HLS A=d HW IP Library

i

Rapid
runtimes 3 Prototyping

 Provides a fully open-source HLS : s MSWBM\“Q/
backend for ESP SW Library
« Enables end-to-end fast prototyping from
algorithmic concept to system
Implementation




o

Pacific . . . .
Northwest ~Research Opportunities: Profile Driven Synthesis

« A multi-level compiler — —

infrastructure provides static o) Comermmmene L

a n a |yS iS IR Front-end IR |

e e . T

e A Comp”er infrastructu re provides [ S. Aﬁalysis&th. Middle-eﬁd , s Analysis & Opt. <

opportunities to implement - | R

dynamic analysis through e j‘g‘s"e‘rﬁg,“y;” |

automated instrumentation and S ‘

profiling \
= E.g., capturing data-dependent Vearting |« 2
patterns and memory transactions B AN mama®iay
» Information can be feed back to the o Mode S T T
5 Estimaton =~

hardware generation engine to
facilitate exploration of the memory
and the Overa” arChIteCtu re deS|gn Lg.ti'lr;]uanaggf ,Iﬁécshgezci)tl;;e ;rlcé]ependent integrated early performance and energy
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« SODA-Opt: https://qitlab.pnnl.gov/sodalite/soda-opt
« Panda-Bambu HLS: https://panda.dei.polimi.it (latest release 0.9.8)

* OpenROAD: https://theopenroadproject.org (external tool, leveraged by SODA
toolchain to achieve end-to-end synthesis to ASIC in a fully opensource
compiler toolchain)

« SODA docker image: https://hub.docker.com/r/agostini01/soda

DEAAD Bl
o o et

SODA-OPT PandA-Bambu HLS (v 0.9.8) SODA Docker Image SODA Tutorial: DATE 2022


https://gitlab.pnnl.gov/sodalite/soda-opt
https://panda.dei.polimi.it/
https://theopenroadproject.org/
https://hub.docker.com/r/agostini01/soda
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« SODA implements an end-to-end (high-level frameworks to silicon) compiler-based
toolchain for the generation of domain-specific accelerators
= Modular, multi-level, extensible
All based on interoperating open-source technologies
Targets reconfigurable architectures FPGAs as well ASICs
Considers system-level implications
Enables automated design space exploration and agile hardware design

 The SODA Synthesizer provides a no-human-in-the-loop toolchain from algorithmic
formulation to hardware implementation for complex workloads
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