
SODA Synthesizer:
an Open-Source,

End-to-End Hardware
Compiler

Nicolas Bohm Agostini, Serena Curzel,
Ankur Limaye, Marco Minutoli, Vito Castellana,

Joseph Manzano, Fabrizio Ferrandi, Antonino Tumeo

Antonino Tumeo

Chief Scientist, High Performance Computing Group

2

Motivations

• Data science algorithms, approaches, and frameworks are
quickly evolving

• Domain-specific accelerators are the only possible
approach to keep increasing performance in tight
constraints

• Existing accelerators start from specific models (i.e., mostly
deep neural networks) or only try to accelerate specific
computational patterns coming from high-level frameworks

• Designing hardware by hand is complex and time-
consuming

• Depending on the application, a designer may want to
explore performance, area, energy, accuracy, and more…

• Need tools to quickly transition from formulation of an
algorithm to the accelerator implementation and
explore the accelerator design along different
dimensions

LeNet architecture from the original paper

3

SODA Synthesizer: Overview

• A modular, multi-level, interoperable, extensible,
open-source hardware compiler from high-level
programming frameworks to silicon

• Compiler-based frontend, leveraging the MultiLevel
Intermediate Representation (MLIR)

• Compiler-based backend, leveraging state-of-the-
art High-Level Synthesis (HLS) techniques, as well
as a Coarse-Grained Reconfigurable Array (CGRA)
generator

• Generates synthesizable Verilog for a variety of
targets, from Field Programmable Gate Arrays
(FPGAs) to Application Specific Integrated Circuits
(ASICs)

• Optimizations at all levels are performed as compiler
optimization passes

Translate to MLIR IR

Backend:
HLS

Frontend:
SODA-OPT

Synthesizer

Design Space
Exploration

Templates

Components

FPGA or ASIC Targets

Constraints

Resource Library

Metrics

High-Level
Framework ML Model

Chip Design

DSL

Evaluation

Executable

Processor

LLVM Tools

[M. Minutoli, V. G. Castellana, C. Tan, J. Manzano, V. Amatya, A.
Tumeo, D. Brooks, G-Y. Wei: SODA: a New Synthesis Infrastructure
for Agile Hardware Design of Machine Learning Accelerators. ICCAD
2020: 98:1-98:7]

[J. Zhang, N. Bohm Agostini, S. Song, C. Tan, A. Limaye, V. Amatya,
J. Manzano, M. Minutoli, V. G. Castellana, A. Tumeo, G-Y. Wei, D.
Brooks: Towards Automatic and Agile AI/ML Accelerator Design with
End-to-End Synthesis. ASAP 2021: 218-225]

[N. Bohm Agostini, S. Curzel, J. Zhang, A. Limaye, C. Tan, V. Amatya, M. Minutoli, V.G. Castellana, J. Manzano, A. Tumeo: Bridging
Python to Silicon: The SODA Toolchain. IEEE Micro Magazine, to appear.]

4

SODA-OPT: Frontend and High-Level IR

• SODA-OPT: Search, Outline, Dispatch, Accelerate frontend
Optimizer “generates” the SODA High-Level IR

• Employs and embraces the MLIR framework
§ MLIR: Multi-Level Intermediate Representation
§ Used in TensorFlow, TFRT, ONNX-MLIR, NPComp, others
§ Several architecture independent dialects (Linalg, Affine,

SCF) and optimizations

• Interfaces with high-level ML frameworks through MLIR
“bridges” (e.g., libraries, rewriters)

• Defines the SODA MLIR dialect and related compiler passes to:
§ Identify dataflow segments for hardware generation
§ Perform high-level optimizations (dataflow transformations,

data-level and instruction-level parallelism extraction)
§ Generate interfacing code and runtime calls for

microcontroller

SODA-OPT: System Overview

MLIR: Linalg and Affine Dialects

Search & Outline kernel functions

Isolate Kernel & Host Code

MLIR and SODA Dialects

Analysis &
high-level

optimization

Convert SODA
Operations to

Runtime

Low-Level IR Low-Level IR

MLIR Kernel
Code

MLIR Host
Code

Frontend: SODA-OPT

From: High-Level Framework

To: Backend To: LLVM Tools

Translate to LLVM IR

https://gitlab.pnnl.gov/sodalite/soda-opt

[N. Bohm Agostini, D. Kaeli, A. Tumeo: SODA-OPT: System-Level Design in MLIR for HLS. SC 21 Poster]

[N. Bohm Agostini, S. Curzel, V.C. Amatya, C. Tan, M. Minutoli, V. G. Castellana, J. Manzano, D. Kaeli, A. Tumeo, An MLIR-
based Compiler Flow for System-Level Design and Hardware Acceleration. ICCAD 2022]

https://gitlab.pnnl.gov/sodalite/soda-opt

5

SODA Synthesizer: HLS Backend

• The synthesizer backend take as input the properly
optimized low-level IR and generate the hardware
descriptions of the accelerators

• The HLS backend is PandA-Bambu, an open-
source state-state-of-the-art high-level synthesis
(HLS)
§ Key features: parallel accelerator designs, modular

HLS, and ASIC support
• The HLS backend provides automated testing and

verification of the generated designs
• Note: SODA-OPT now also supports output to

commercial HLS tools (Vits-HLS)
https://panda.dei.polimi.it

Analysis & low-level optimization

Template
based

synthesis

Allocation

Scheduling

Binding

Modules (RTL IR)

System (RTL IR)

Verilog and Testbench

Backend: HLS

From: Frontend

To: Chip Design

[Fabrizio Ferrandi, Vito Giovanni Castellana, Serena Curzel, Pietro Fezzardi, Michele Fiorito, Marco Lattuada, Marco Minutoli,
Christian Pilato, Antonino Tumeo: Invited: Bambu: an Open-Source Research Framework for the High-Level Synthesis of
Complex Applications. DAC 2021: 1327-1330]

6

Why an HLS Backend?

• Provides the necessary generality to deal with novel algorithms
• Provides opportunities for specialized and optimized templates by

recognizing specific computational patterns

• The SODA Approach relies on progressive lowerings of compiler
intermediate representations (IRs), rather than rewriting annotated C/C++
§ Reduces semantic mismatches between high-level and low-level descriptions
§ Provides further opportunities to apply optimizations at the right level of abstraction

• New optimizations as additional compiler passes
• Design space exploration formulated as a compiler optimization problem

7

SODA Synthesizer: ASIC targets
• The multi-level approach of the SODA

toolchain allows supporting different target
technologies (FPGA, ASIC) for actual
generation of the designs

• ASIC targets:
• Commercial Tools (Synopsys Design

Compiler with Global Foundries 12/14 nm
cells)

• OpenROAD suite (OpenPDK 45nm and
ASAP 7nm cell libraries)

• Backend’ resources characterized for the
target technology:

• Eucalyptus tool in Bambu, allows driving
hardware synthesis algorithms to
optimize for area, latency, etc

SODA characterization flow. The characterization flow can be
extended to synthesize HLS generated designs, or used to estimate
their area-latency-power profiles to drive the Design Space
Exploration engine

https://theopenroadproject.org

https://theopenroadproject.org/

8

SODA-OPT Optimization Passes

• SODA-OPT implements optimizations as compiler passes

Single basic block containing the compute
intensive part of the kernel

More freedom to schedule operations

Increased instruction-level parallelism
Schedule independent arithmetic operations on the

same cycle when their inputs are available

Increased data-level parallelism
Schedule operations into different memory units on

the same cycle

Avoid unnecessary reads from kernel arguments
Reduce expensive accesses to external memory

Reuse read results, aggregate on scalars
Save scalar values loaded from memory and
intermediate results in registers rather than

performing repeated memory accesses

Early alias analysis
Schedule memory operations independently on

regions that don’t alias

Remove redundant or unnecessary operations
Avoid wasting resources

Tiling

Unrolling

Temporary Buffer
Allocation

Alloca Buffer
Promotion

Scalar Replacement
of Aggregates

Early Alias Analysis

Outlining

Common
Sub-expression

Elimination

Dead Code
Elimination

Structural

Memory

Avoid Redundancy
and Promote Reuse

Avoid Unnecessary
Operations

9

PolyBench with ASAP 7nm
• Representative of algorithmic

patterns in scientific computing or
high-level data science frameworks

• Tensors of different dimensions
• Target frequency: 1 GHz
• Significant speedups, increased

energy efficiency and comparatively
small area overheads

• 1 GHz constraint met by all the non-
optimized cases

• Maximum frequency for the optimized
cases reduced for larger tensor
sizes

• ASIC designs not generated for a few
optimized cases with larger tensor
sizes because of routing congestion

10

From Python to optimized ASIC

• LeNet example
• Each of the operator is

synthesized to an ASIC
accelerator using OpenROAD
and FreePDK 45 nm

• SODA-Opt optimized
accelerators are bigger, but also
much faster

LeNet architecture from the original paper

11

LeNet with OpenPDK 45 nm

• SODA-OPT’s optimizations provide a speedup proportional to the increase
in the area

• Power efficiency may be slightly reduced due to an increase in power
consumption of the faster solutions

12

Research Opportunities: Open-Source Ecosystem

• SODA demonstrates how several Open-Source tools can seamlessly integrate
• SODA also provides initial support to commercial backends:

§ SODA-OPT generated LLVM IR can already be fed to Xilinx Vitis HLS
§ SODA also targets commercial ASIC logic synthesis tools

• Integration of proprietary tools, however, still is a significant challenges
• Significant opportunities in supporting:

§ Open-source intellectual property (IP) blocks as components in the resource libraries
§ Open-source system prototyping platforms
§ Open-source domain-specific FPGA generators to enable specialization starting from

the high-level specifications

13

Research Opportunities: System-Level Design
• Integrating with open-source fast

prototyping platforms: Columbia University
Embedded Scalable Platforms (ESP)

• SODA-OPT
• MLIR is naturally modular and

hierarchical
• Can lower to multiple targets, including

runtimes
• Bambu

• Provides a fully open-source HLS
backend for ESP

• Enables end-to-end fast prototyping from
algorithmic concept to system
implementation

14

Research Opportunities: Profile Driven Synthesis

• A multi-level compiler
infrastructure provides static
analysis

• A compiler infrastructure provides
opportunities to implement
dynamic analysis through
automated instrumentation and
profiling
§ E.g., capturing data-dependent

patterns and memory transactions
§ Information can be feed back to the

hardware generation engine to
facilitate exploration of the memory
and the overall architecture design [A. Tumeo: Architecture independent integrated early performance and energy

estimation. IGSC 2017: 1-6]

15

Public Software Repositories

• SODA-Opt: https://gitlab.pnnl.gov/sodalite/soda-opt
• Panda-Bambu HLS: https://panda.dei.polimi.it (latest release 0.9.8)
• OpenROAD: https://theopenroadproject.org (external tool, leveraged by SODA

toolchain to achieve end-to-end synthesis to ASIC in a fully opensource
compiler toolchain)

• SODA docker image: https://hub.docker.com/r/agostini01/soda

SODA-OPT SODA Docker ImagePandA-Bambu HLS (v 0.9.8) SODA Tutorial: DATE 2022

https://gitlab.pnnl.gov/sodalite/soda-opt
https://panda.dei.polimi.it/
https://theopenroadproject.org/
https://hub.docker.com/r/agostini01/soda

16

Conclusions

• SODA implements an end-to-end (high-level frameworks to silicon) compiler-based
toolchain for the generation of domain-specific accelerators

§ Modular, multi-level, extensible
§ All based on interoperating open-source technologies
§ Targets reconfigurable architectures FPGAs as well ASICs
§ Considers system-level implications
§ Enables automated design space exploration and agile hardware design

• The SODA Synthesizer provides a no-human-in-the-loop toolchain from algorithmic
formulation to hardware implementation for complex workloads

Thank you

17

